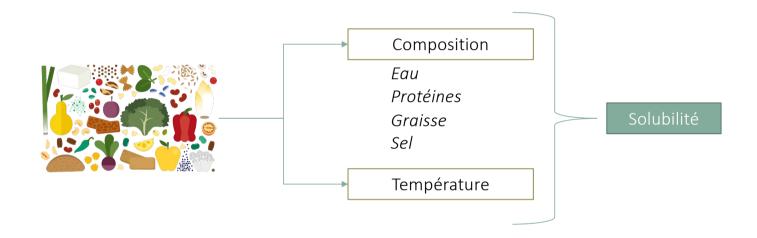

CO2 Solubility and Composition Data of Food Products

Stored in Data Warehouse Structured by an Ontology

Mélanie Munch, Patrice Buche, Luc Menut, Julien Cufi, Valérie Guillard


Contexte (1)

Dioxyde de Carbone CO²

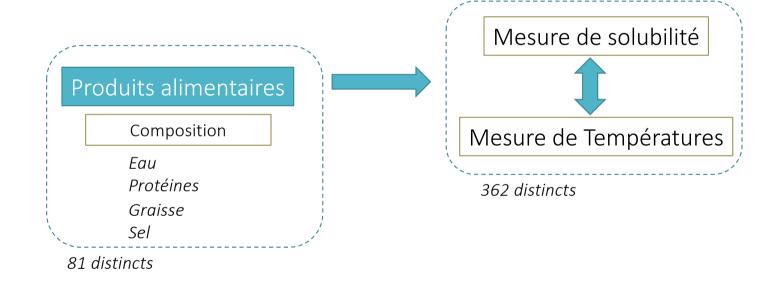
- → Impact sur la conservation des aliments en atmosphère modifiée
- → Besoin de prédire la solubilité en CO² des aliments

Contexte (2)

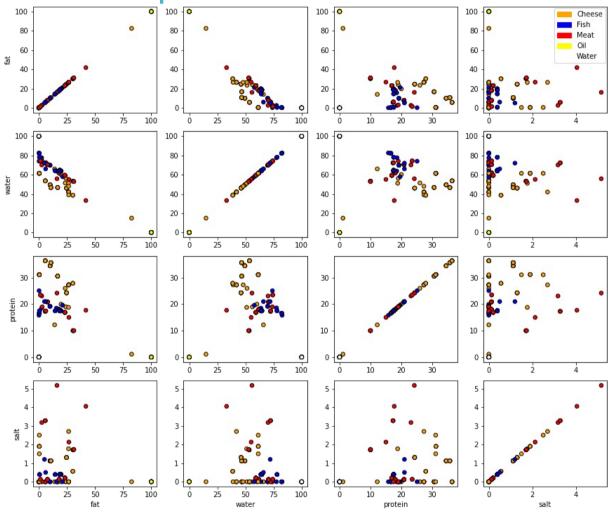
- → Impact de différents paramètres
- → Différents régimes en fonction des conditions: pas de modèle global

Enjeu du dataset

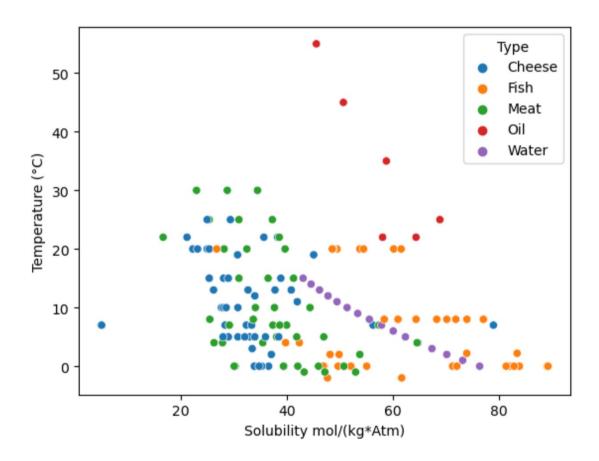
Constitution d'une base de données d'aliments indiquant:

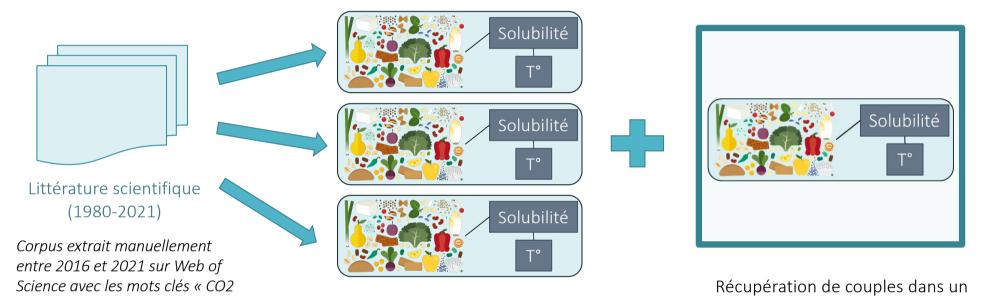

La composition (eau, protéines, graisses, sel)

La solubilité en CO² à une température donnée


Importance de conserver la **traçabilité** des données

Garantir la facilité de comparaison et de recoupement à travers les différentes informations


Description

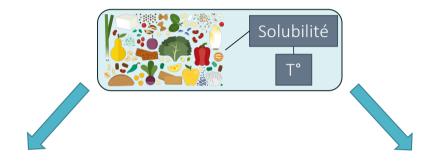

Diversité des profils des aliments

Diversité des mesures de solubilité

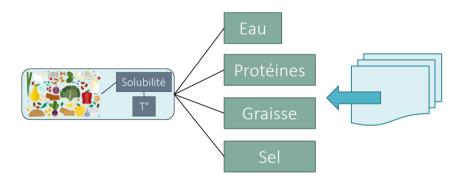
Constitution de la base (1)

Constitution d'une base de couples

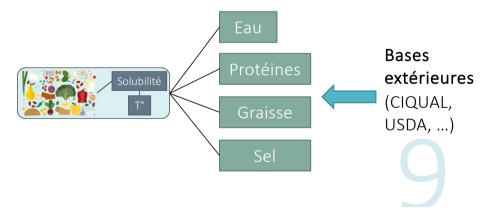
290 Mesures Récupérées


→ Les principaux aliments étudiés sont: les fromages, la viande, le poisson, l'eau et l'huile

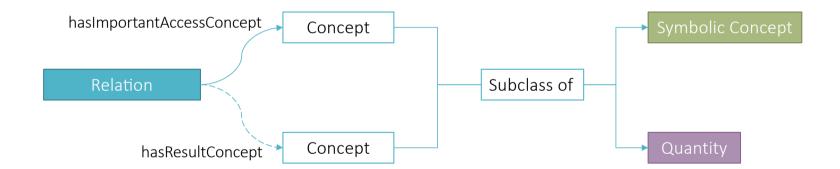
solubility » et « Food »


article précédent

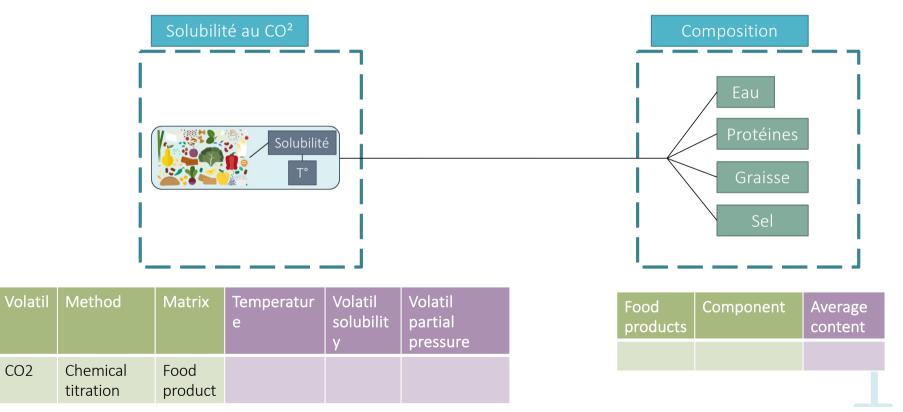
72 Mesures Récupérées


Constitution de la base (2)

La composition est comprise dans l'article



La composition n'est pas comprise dans l'article / est incomplète


Sémantisation des données

@Web: Ontologie dédiée à la représentation de relations n-aires

Définition dans @Web

Deux relations

Exemple d'utilisation d'@Web

n° Volatil	Method	Matrix	Temperature Unit : oC	Volatil Solubility Unit : l.kg-1.atm-1	Volatil Partial pressure Unit : %
CO2	Solubility method	Cheese semi-hard	Temperature 2.000e+01	Volatil Solubility	Volatil Partial pressure
null	Chemical titration	Cheese semi-hard 10+		[5.100e-01 ; 5.300e-01]	[0.000e+00 ; 1.000e+02]
CO2	Solubility method	Cheese semi-hard	Temperature	Volatil Solubility	Volatil Partial pressure
null	Chemical titration	Cheese semi-hard 10+	1.500e+01	[5.500e-01 ; 5.900e-01]	[0.000e+00 ; 1.000e+02]
CO2	Solubility method	Cheese semi-hard	Temperature 1.000e+01	Volatil Solubility	Volatil Partial pressure
null	Chemical titration	Cheese semi-hard 10+		[6.300e-01 ; 6.500e-01]	[0.000e+00 ; 1.000e+02]
CO2	Solubility method	Cheese semi-hard	Temperature 5.000e+00	Volatil Solubility	Volatil Partial pressure
null	Chemical titration	Cheese semi-hard 10+		[7.000e-01 ; 7.400e-01]	[0.000e+00 ; 1.000e+02]
CO2	Solubility method	Cheese semi-hard	Temperature 0.000e+00	Volatil Solubility	Volatil Partial pressure
null	Chemical titration	Cheese semi-hard 10+		[7.600e-01 ; 8.000e-01]	[0.000e+00 ; 1.000e+02]
CO2	Solubility method	Cheese semi-hard	Temperature 2.000e+01	Volatil Solubility	Volatil Partial pressure
null	Chemical titration	Cheese semi-hard 20+		[4.800e-01 ; 5.200e-01]	[0.000e+00 ; 1.000e+02]

Accessibilité

Accessible à partir de l'API Web @Web

https://ico.iate.inra.fr/atWeb/#

Requêtable à partir d'un endpoint dédié

https://ico.iate.inra.fr/fuseki/annotation/query

Sous forme de CSV

https://doi.org/10.15454/4SFE64

Conclusion

Présentation d'un jeu de données constitué par l'agrégation manuelle de différentes sources

Fournit une compilation inédite et complète de valeurs mesurées sur un vaste panel d'aliments représentatifs

Possibilité d'enrichissement avec de nouvelles méta-données (fiabilité de la source, ...)

Permet d'étudier le comportement de la solubilité sous différents régimes

Melanie Munch, Patrice Buche, Luc Menut, Julien Cufi, Valérie Guillard. CO2 solubility and composition data of food products stored in data warehouse structured by an ontology. Data in Brief, Volume 47, 2023.

https://doi.org/10.1016/j.dib.2023.108950 V. Guillard, P. Buche, J. Dibie, S. Dervaux, F. Acerbi, E. Chaix, N. Gontard, C. Guillaume, CO2 and O2 solubility and diffusivity data in food products stored in data warehouse structured by ontology. Data Brief 7 (2016) 1556–1559, doi:10.1016/j.dib.2016.04.044.