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Tutelles du LIRIS et Ressources Humaines 

5 tutelles (148 permanents) 
CNRS (15) 

INSA de Lyon (46) 

Université Lyon 1 (65) 

Université Lyon 2 (9) 

ECL (8) 

 

Université Lyon 3 (3) 

INRIA (1) 

Hors tutelle (1) 

 

Sur 3 campus et  
5 bâtiments : 327 

Villeurbanne (291) 

Bron (16) 

Ecully (20) 
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La structure du laboratoire 
6 pôles scientifiques et 14 équipes 
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http://www.irit.fr/CAIR 



Traditional search engines 

Motivation (1/4) 

A user looking for informations about a given movie actor? 

Brad Pitt 

News Images 
5 

Reviews 

Consider many documents 

Extract relevant information 

Syntesize/configure the final answer 



Aggregated Search Engine 

Motivation (2/4) 

Brad Pitt 

News Images 
6 

Reviews 



Motivation (3/4) 

http://www.sigir2011.org/PDF/keynote-chengxiang-zhai.pdf 
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The phone numbers are provided by the authors. 
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List of papers and their topics 
1 SELECT DISTINCT ?author ?phone WHERE { 

2  <http://www.org/conference/wsc/www2011/proceedings> 

3                                                                                  wsc : hasPart ?pub  

4  ?pub swc : hasTopic  ?topic . 

5  ?topic rdfs : label ?topicLabel . 

6  FILTER regex ( str  (?topicLabel) , ”web services” , ”i” ) . 

7  ?pub swrc : author  ?author . 

8 {?author owl:sameAs ?authAlt } UNION {?authAlt owl:sameAs  
?author}  

9  ?authAlt  foaf : phone ?phone 

Query: phone number of people who authored a Web service related paper at  
the World Wide Web Conference 2011 (WWW’11) 

Motivation (4/4) 
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Smart Cities: Lyon - http://data.grandlyon.com/ 
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Objectives 

Aggregation: composing relevant pieces of information, 
each piece partially contributes to the answer but together 
they form a complete response.  

Queries: look for objects that do not exist as such in the 
sources, but are built by assembling fragments.  

Applications: analytical tasks (opinion analysis, trend 
analysis, product comparison, risk analysis, event 
summarization, Web services engineering).  

Existing systems: Bibliometric systems (list of 
publications of an individual + analytical information (rate 
of citation for each publication, indicators like h-index, the 
list of co-authors)).  
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 Semantic: the interpretation of the query (the 
problems are related to the "vocabulary 
mismatch", the capture of the intent of the user) 
and the qualification of the results with regards 
to the initial (user) query. 
 
Computational: the combinatorial problem 
induced by the choice of fragments and multiple 
ways to aggregate them. 

Challenges 



 

 

 

 

 

 

RDF - Resource Description Framework 

Brad 

Pitt 
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Actor is 

RDF graph 
RDF Triple 

(<Sujet>,<Prédicat>,<Objet>) 
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Mr & Mrs 
Smith 

Brad Pitt 

genre 

has-played-in 

Doug 
Liman 

Actor 

has-directed 

Action 

is 

has-playen-in 

spouse 

Anjolina 
jolie 



Problem 

 Query 

 

 

 

 Data set 

 

 

 Answer 
Labeled graphs 

q 

g1 g2 g3 

{g2} 
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Exact matching 

Approach: Filtering + Verification 

q 

g1 g2 g3 

ID-List: {g1,g2} 

Pattern A: 

Not relevant Candidate (Pattern A) Candidate (Pattern A) 

Not relevant 

Solution 

Filtering: 

Verification: 
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Existing approaches 

 Graph mining: mined patterns - paths 

GraphGrep[ICPR’02], treesTreePi[ICDE’06] and 

QuickSI[VLDB’08], sub-graphs FGIndex[SIGMOD’07] and 

gIndex[SIGMOD’04] 

 Filtering : index structure to speed up the search of 

patterns in the query gIndex[SIGMOD ’ 04], 

FGIndex[SIGMOD’07], QuickSI[VLDB’08] 

 Verification : graph isomorphism algorithms (improved 

versions of Ullmann’s algorithm) QuickSI[VLDB’08], 

TreePi[ICDE’06], FGIndex[SIGMOD’07] 
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Aggregated Search 

q 

q 
g1 g3 

+ = 

g1 

g2 

g3 
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Queries 

 

 Variables 

 Constants (known resources) 

x1 

x2 

prof 

x3 trainee 

co-worker 

is 

supervises 

friend 

as 
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General processing model 

Phase 1 

Encoding 

Phase 2 

Common 

Edges 
Phase 3 

Query 

Decomposition 

Phase 4 

Composition/
Configuration 

(SQL-based)  Aggregated Search 

18 



graphID edgeID eLabel sVID sVLabel dVID dVLabel 

3 1 group 1 Said 2 DB 

3 2 as 1 Said 3 prof 

3 3 in 3 prof 4 Univ-Lyon1 

5 4 supervises 5 Said 6 Huy 

5 5 supervises 5 Said 7 Heni 

5 6 is 6 Huy 8 trainee 

5 7 is 7 Heni 9 trainee 

5 8 co-worker 10 Haytham 6 Huy 

5 9 co-worker 10 Haytham 7 Heni 

Phase 1: Edge-Edge Encoding Schemes (Sakr and Al-Naymat [1]) 

Said DB 

Univ-
Lyon1 

prof 

group 

in 

as 

d3 

[1] Sherif Sakr and Ghazi Al-Naymat. Efficient relational techniques for processing graph queries, 2010. 

Huy trainee 

Haytham 

is 

co-worker Said 

Heni 

trainee 

is 
co-worker 

d5 

Graph DB 

Relational DB 

encoded 
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graphIDQ graphID edgeIDQ edgeID eLabel sVLabel dVLabel 

1 5 1 4 supervises Said Huy 

1 5 2 5 is Huy trainee 

1 5 3 6 co-worker Haytham Huy 

commonedges table 

Phase 2: Common edges search 

Huy trainee 

Haytham 

is 

co-worker Said 

LIRIS 

Univ-
Lyon1 

in 

x1 

x2 

prof 

x3 trainee 

co-worker 

is 

supervises 

friend 

as 

d5 

 Discover all edges that belong to both the query graph q and a graph database D.  

 Whether all edges in q are present in D. 

 

q 
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query q 

qconst. 
qano. 

verification 

valid? 

end 
false 

Aggregate search 
true 

x1 

x2 

prof 

x3 trainee 

co-worker 

is 

supervises 

friend 

as 

Univ-
Lyon1 

in 

prof 
Univ-
Lyon1 

in 
x1 

x2 

prof 

x3 trainee 

co-worker 

is 

supervises 

friend 

as 

Phase 3: Query Decomposition  
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AV = {v1, v2,..,vn} 
set of variables in 

descending order of 
degree 

v = v1 

set of label candidates of v 
S= {a1, a2,..an}  

Verification 
no  

Search(q, v, AV, C, R) 

yes 

End 

For each ai in S 

qv = query_generator(q, ai); 

S= {a1, a2,..am}, m <=n 

v = nextVertex(AV); 

Search(qv, v, AV, C, R) 

v = NULL  

R  {q} 

no  

yes 

C: set of common 
edges 

Phase 4: Evaluation & Configuration/Composition 

R: final answer (set) 
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Huy 
M2 
ECD 

student 
d1 

Said Julien 

Abdelkader 

friend 

Univ-
Nantes 

in 

Vietnam 

from 

Said 

prof 

DB 
group 

Univ-
Lyon1 

in 

Huy trainee 

Haytham 

is 

co-worker Said 

Heni 

trainee 

is 
co-worker 

Said Haytham 

Huy 

friend 

Heni 
know 

d2 d3 

d4 

d5 

Odilon 

doctorat Said 

is 

Fabrice 
supervises 

d6 

prof 

as 

friend 

co-worker 

Univ-
Nantes in 

q 

friend 

as 

Common edges search  

Mohamed 

co-worker 

x1 

x2 

prof 

x3 trainee 

co-worker 

is 

supervises 

friend 

as 
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Said Julien 

Abdelkader 

friend 

Said 

prof 

Huy trainee 

Haytham 

is 

co-worker Said 

Heni 

trainee 

is 
co-worker 

Said Haytham 

Huy 

friend 

d2 d3 

d4 

d5 

co-worker 

friend 

as 

Evaluation & Configuration/Composition 

q 

x1 

x2 

prof 

x3 trainee 

co-worker 

is 

supervises 

friend 

as 
Heni 

Huy 

Odilon 

Odilon 

doctorat Said 

is 

Fabrice 
supervises 

d6 

prof 

as 

friend 

Mohamed 

co-worker 

1. Label - candidates 
2. Validation 
3. Query generator 
4. Next variable 
5. Recursion 

x1 

x2 

prof 

Heni trainee 

co-worker 

is 

supervises 

friend 

as 

x1 

x2 

prof 

Huy trainee 

co-worker 

is 

supervises 

friend 

as 

Said 

Fabrice 

Said 

x2 

prof 

Heni trainee 

co-worker 

is 

supervises 

friend 

as 

Julien Haytham 

Said 

Haytham 

prof 

Heni trainee 

co-worker 

is 

supervises 

friend 

as 

answer 1 

Said 

Haytham 

prof 

Huy trainee 

co-worker 

is 

supervises 

friend 

as 

answer 2 

[….] 
DUPLICATE query AND 
SET vLabel = ‘Heni’ 

WHERE  
 vertexID = x3 

DUPLICATE query AND 
SET vLabel = ‘Huy’ 

WHERE  
 vertexID = x3 

SELECT  vertices V 
FROM common edges c 

HAVING  
 eLabels  = all eLabels of x3 

SELECT  count(graphID) 
FROM common edges c 

WHERE  
 sVLabel= ‘Heni’ 
AND dVLabel = ‘trainee’ 
AND eLabel = ‘is’; 

1 

SELECT  count(graphID) 
FROM common edges c 

WHERE  
 sVLabel= ‘Odilon’ 
AND dVLabel = ‘trainee’ 
AND eLabel = ‘is’; 

0 



Final answer set 

# x1 x2 x3 

1 Said Haytham Heni 

2 Said Haytham Huy 

Said 

Haytham 

prof 

Heni trainee 

co-worker 

is 

supervises 

friend 

as 

answer 1 

Said 

Haytham 

prof 

Huy trainee 

co-worker 

is 

supervises 

friend 

as 

answer 2 
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Architecture 

Query Parser 

edgeid gqid svlabel elabel dvlabel 

AGASearch Self-join 

Execution Time 

 
Execution Time 

 

DB 

graphID edgeID eLabel sVLabel dVLabel query 

Common-edge 
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Benchmark : Data Generation 

The Berlin SPARQL Benchmark (BSBM) [2] 

[2] Bizer C. & Schultz A. (2009). The berlin sparql benchmark. 

Data Sets Size #Triples Execution 
Time 

Execution 
Time 

(self-join) 

Edge2edge100 25,6 Mb 105124 7,56 min 2,215 s 

Edge2edge100_ind 91,5 Mb 105124 3,963 min 1,117 s 

Edge2edge10M 2,4 Gb 10036982 >35 min >15 min 

Edge2edge10M-ind 7,9 Gb 10036982 >20 min 20,642 s 

Edge2edge100M 45,4 Gb 189905757 >40 min >30 min 
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Benchmark Berlin (BSBM) 

Data Set 105 118 triples 

Queries:  16 queries (Qi,j with i:#variables, j:#constantes) 

Environnement: RAM (8 GB), Processor (3.2 GHz) 

1
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(s

ec
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Experiments 
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Cost of each phase 

Verification time > 70% of the total time 

More than 95% of the selected candidates are not relevant 
 

Requête #ValidCandidates #NonValidCondidates 

Q1,1 100 0 

Q1,2 200 89 

Q1,3 300 89 

Q1,4 400 183 

Q2,1 12879 12579 

Q2,2 21380 21277 

Q2,3 32059 31950 

Q2,4 32170 31951 

Q3,1 13079 12579 

Q3,2 21502 21372 

Q3,3 32181 31951 

Q3,4 42740 42529 

Q4,1 162879 157757 

Q4,2 22880 22745 

Q4,3 22856 22739 

Q4,4 44238 44101 

73% 

1% 

26% Verification

CE

Query generation
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Results 
Ti
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e 

(s
ec

) 



iseeker 
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A SPARQL Query Which Topic is Politics: 
 
      SELECT ?president ?party ?page  
      WHERE 
      {   
        ?president  <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>   <http://dbpedia.org/ontology/President> .   
        ?president <http://dbpedia.org/ontology/nationality> <http://dbpedia.org/resource/United_States> .    
        ?president <http://dbpedia.org/ontology/party> ?party .  
        ?x  <http://data.nytimes.com/elements/topicPage>  ?page . 
       } 

 
 Three SPARQL EndPoints: 

 
http://dbpedia.org/sparql     http://ibm.rkbexplorer.com/sparql/         http://factforge.net/sparql/ 
 
 
 
 
 
  
 

Example 
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http://dbpedia.org/sparql
http://ibm.rkbexplorer.com/sparql/
http://ibm.rkbexplorer.com/sparql/
http://factforge.net/sparql/
http://factforge.net/sparql/
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 The execution of iSeeker for the 

second time. 

36 



37 



We selected four Sparql queries and six endpoints recommended by Fedbench. The 

queries are available online(*), The selected queries cover three different topics 

including politics, movies, and geographical location. 

* https://code.google.com/p/fbench/ 
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Query Annotator (1/2) 

SELECT DISTINCT ?drug ?enzyme ?reaction 
Where { 
    ?drug1 drugCategory antibiotics . 
    ?drug2 drugCategory antiviralAgents . 
    ?drug3 drugCategory antihypertensiveAgents . 
    ?I1 interactionDrug2 ?drug1 .   
    ?I2 interactionDrug1 ?drug . 
    ?I1 interactionDrug1 ?drug .   
    ?I2 interactionDrug2 ?drug2 . 
    ?I3 interactionDrug2 ?drug3 .   
    ?I3 interactionDug1 ?drug . 
    ?drug keggCompoundId  ?cpd . 
    ?enzyme xSubstrate ?cpd .   ?drug owl:sameAs ?drug5. 
    ?enzyme rdf:type Enzyme .  ?reaction xEnzyme ?enzyme. 
    ?reaction equation ?equation .  ?drug5 rdf:type Drug . 
} 
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Query Annotator (2/2) 

Fu-Berlin Drugbank (S1), Fu-Berlin DBCategory (S2), DBPedia (S3), ChEBI (S4), 

SIDER(S5), LinkedCT (S6), Pittsburg repository (S7), DailyMed (S8), KEGG (S9) and 

Bio2RDF(S10). 
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Highly Connected Graph Clustering Algorithms 
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