

Aggregated search in large RDF repositories

Youssef Barhoun, Haytham Elghazel, Mohand-Saïd Hacid, Rafiqul Haque, Thanh-Huy Le

November 24, 2015

Tutelles du LIRIS et Ressources Humaines

5 tutelles (148 permanents)

- CNRS (15)
- INSA de Lyon (46)
- Université Lyon 1 (65)
- Université Lyon 2 (9)
- **ECL** (8)
- Université Lyon 3 (3)
 INRIA (1)
 Hors tutelle (1)

Sur 3 campus et 5 bâtiments : 327

- Villeurbanne (291)
- Bron (16)
- Ecully (20)

La structure du laboratoire 6 pôles scientifiques et 14 équipes

http://www.irit.fr/CAIR

Motivation (1/4)

A user looking for informations about a given movie actor?

Motivation (2/4)

Motivation (3/4)

Opinion Analysis on Blog Articles

What did people like/dislike about "Da Vinci Code"?

http://www.sigir2011.org/PDF/keynote-chengxiang-zhai.pdf

Motivation (4/4)

The phone numbers are provided by the authors.

authoritative for the URIs used to represent the topics

Smart Cities: Lyon - http://data.grandlyon.com/

- Aggregation: composing relevant pieces of information, each piece <u>partially contributes</u> to the answer but together they form a complete response.
- **Queries:** look for objects that <u>do not exist</u> as such in the sources, but are built by assembling fragments.
- Applications: analytical tasks (opinion analysis, trend analysis, product comparison, risk analysis, event summarization, Web services engineering).
 - **Existing systems:** Bibliometric systems (list of publications of an individual + analytical information (rate of citation for each publication, indicators like h-index, the list of co-authors)).

Challenges

Semantic: the *interpretation* of the query (the problems are related to the "vocabulary mismatch", the capture of the intent of the user) and the qualification of the results with regards to the initial (user) query.

Computational: the *combinatorial* problem induced by the choice of fragments and multiple ways to aggregate them.

RDF - Resource Description Framework

Problem

Existing approaches

Graph mining: mined patterns - paths GraphGrep[ICPR'02], treesTreePi[ICDE'06] and QuickSI[VLDB'08], sub-graphs FGIndex[SIGMOD' 07] and gIndex[SIGMOD' 04]

Filtering : index structure to speed up the search of patterns in the query glndex[SIGMOD ' 04], FGIndex[SIGMOD'07], QuickSI[VLDB'08]

Verification : graph isomorphism algorithms (improved versions of Ullmann's algorithm) QuickSI[VLDB'08], TreePi[ICDE'06], FGIndex[SIGMOD' 07]

Aggregated Search

- Variables
- Constants (known resources)

(SQL-based) Aggregated Search

Phase 1: Edge-Edge Encoding Schemes (Sakr and Al-Naymat [1])

graphID	edgeID	eLabel	sVID	sVLabel	dVID	dVLabel
3	1	group	1	Said	2	DB
3 2		as	1	Said	3	prof
3	3 in		3 prof		4	Univ-Lyon1
5	4	supervises	5	Said	6	Huy
5	5	supervises	5	Said	7	Heni
5	6	is	6	Huy	8	trainee
5	7	is	7	Heni	9	trainee
5	8	co-worker	10	Haytham	6	Huy
5	9	co-worker	10	Haytham	7	Heni

[1] Sherif Sakr and Ghazi Al-Naymat. Efficient relational techniques for processing graph queries, 2010.

LIR

Phase 2: Common edges search

Phase 3: Query Decomposition

Phase 4: Evaluation & Configuration/Composition

Final answer set

Architecture

Benchmark : Data Generation

The Berlin SPARQL Benchmark (BSBM) [2]

Data Sets	Size	#Triples	Execution Time	Execution Time (self-join)
Edge2edge100	25,6 Mb	105124	7,56 min	2,215 s
Edge2edge100_ind	91,5 Mb	105124	3,963 min	1,117 s
Edge2edge10M	2,4 Gb	10036982	>35 min	>15 min
Edge2edge10M-ind	7,9 Gb	10036982	>20 min	20,642 s
Edge2edge100M	45,4 Gb	189905757	>40 min	>30 min

[2] Bizer C. & Schultz A. (2009). The berlin sparql benchmark.

- Benchmark Berlin (BSBM)
- Data Set 105 118 triples
- Queries: 16 queries (Q_{i,i} with i:#variables, j:#constantes)
- Environnement: RAM (8 GB), Processor (3.2 GHz)

Cost of each phase

26%	VerificationCEQuery generation
1%	73%

Verification time > 70% of the total time

More than 95% of the selected candidates are not relevant

Requête	#ValidCandidates	#NonValidCondidates
Q1,1	100	0
Q1,2	200	89
Q1,3	300	89
Q1,4	400	183
Q2,1	12879	12579
Q2,2	21380	21277
Q2,3	32059	31950
Q2,4	32170	31951
Q3,1	13079	12579
Q3,2	21502	21372
Q3,3	32181	31951
Q3,4	42740	42529
Q4,1	162879	157757
Q4,2	22880	22745
Q4,3	22856	22739
Q4,4	44238	44101

	AGA	AGA+
Q1,1	2,42	2,37
Q1,2	1,78	4,66
Q1,3	2,08	9,73
Q1,4	2,16	15,01
Q2,1	388,71	56,39
Q2,2	481,64	2,60
Q2,3	792,38	3,70
Q2,4	626,54	5,47
Q3,1	398,54	214,17
Q3,2	549,11	14,76
Q3,3	808,67	19,14
Q3,4	1 065,16	5,50
Q4,1	5 974,79	241,55
Q4,2	698,15	6,37
Q4,3	705,66	7,95
Q4,4	995,51	8,01

iseeker

Example

A SPARQL Query Which Topic is Politics:

```
SELECT ?president ?party ?page WHERE
```

?president <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/President>.
?president <http://dbpedia.org/ontology/nationality> <http://dbpedia.org/resource/United_States>.
?president <http://dbpedia.org/ontology/party> ?party .
?x <http://data.nytimes.com/elements/topicPage> ?page .

Three SPARQL EndPoints:

LIRIS

Endpoints	Screenshots of Execution	Results		Endpoints	SubQueries	Number of Tripl	es Execution Ti	mes Size Of the	
280	Oranis MAB degi =			٥٥.	01	Results	(Executor) RDF File	
DBpedia	Interface Interface <t< th=""><th>No Result</th><th></th><th>DBpedia</th><th>Q2 Q3 Q4</th><th>10000 10000 0</th><th>2 s 836 m 4 s 934 m 0 s 187 m</th><th>s 1315 KB s 1426 KB s 0 KB</th><th></th></t<>	No Result		DBpedia	Q2 Q3 Q4	10000 10000 0	2 s 836 m 4 s 934 m 0 s 187 m	s 1315 KB s 1426 KB s 0 KB	
Øsist	Comparison C	No Result		Osist	Q1 Q2 Q3 Q4	0 0 0 0	0 s 251 m 0 s 234 m 0 s 249 m 0 s 235 m	s O KB s O KB s O KB s O KB	
	foreides offer/defined.org/ontellog/retinelity/ct/defined/foreide.org/retinerer/onted_States				Q1 02	4505 0	2 s 644 m 0 s 297 m	s 600KB s 0 KB	
	○ One visit (and a fine) ■ Box (Second a fine) ■ <th></th> <th></th> <th></th> <th>Q3 Q4</th> <th>68838 36248</th> <th>33 s 532 n 20 s 339 n</th> <th>ns 8889 KB ns 6566 KB</th> <th></th>				Q3 Q4	68838 36248	33 s 532 n 20 s 339 n	ns 8889 KB ns 6566 KB	
;;;; FactForge	<pre>starting the starting sta</pre>	No Result		* Time Execu	ition of Reduce	r when it's perforr	ning alone After E	xecutor finished : 0 s 12	25 ms
		SubQueries	b	Number of triples efore Reduce	Numb trip r after Re	er of N les re educer tripl	umber of dundant es removed		
		Q1		6711	474	14	1967		
		Q2		10000	100	00	0		
		Q3		78838	783	13	525		
	=	Q4		36248	362	48	0		
LIR	ris (37	

We selected four Sparql queries and six endpoints recommended by Fedbench. The queries are available online(*), The selected queries cover three different topics including politics, movies, and geographical location.

* https://code.google.com/p/fbench/

Exec 1

Exec 2

Query Annotator (1/2)

SELECT DISTINCT ?drug ?enzyme ?reaction Where {

?drug1 drugCategory antibiotics .
?drug2 drugCategory antiviralAgents .
?drug3 drugCategory antihypertensiveAgents .
?l1 interactionDrug2 ?drug1 .
?l2 interactionDrug1 ?drug .
?l1 interactionDrug2 ?drug2 .
?l3 interactionDrug2 ?drug3 .
?l3 interactionDug1 ?drug .
?drug keggCompoundId ?cpd .
?enzyme xSubstrate ?cpd . ?drug owl:sameAs ?drug5.
?enzyme rdf:type Enzyme . ?reaction xEnzyme ?enzyme.
?reaction equation ?equation . ?drug5 rdf:type Drug .

Query Annotator (2/2)

Fu-Berlin Drugbank (S1), Fu-Berlin DBCategory (S2), DBPedia (S3), ChEBI (S4), SIDER(S5), LinkedCT (S6), Pittsburg repository (S7), DailyMed (S8), KEGG (S9) and Bio2RDF(S10).

No	Predicates	Sources
01	DrugCategory (P1)	Fu-Berlin Drugbank, Fu-Berlin DBCategory, SIDER, LinkedCT, DailyMed (Total 5 sources)
02	KeggCompoundId (P2)	Fu-Berlin Drugbank, Fu-Berlin DBCategory (Total 2 sources)
03	Xsubstrate (P3)	KEGG (Total 1 source)
04	rdf:type (P4)	DBPedia, KEGG, ChEBI, Fu-Berlin Drugbank, Fu- Berlin, DBCategory (Total 6 sources)
05	owl:sameAs (<mark>P5</mark>)	Fu-Berlin Drugbank, Fu-Berlin DBCategory, KEGG, DBPedia (Total 4 sources)
06	InteractionDrug1 (<mark>P6</mark>)	Fu-Berlin Drugbank, Fu-Berlin DBCategory, SIDER, LinkedCT, DailyMed, Pittsburg Repository (Total 6 sources)
07	Equation (P7)	KEGG (Total 1 source)
08	Xenzyme (P8)	KEGG, Fu-Berlin Drugbank, Fu-Berlin DBCategory, ChEBI, DBPedia (Total 5 sources)
09	InteractionDrug2 (P9)	Fu-Berlin Drugbank, Fu-Berlin DBCategory, SIDER, LinkedCT, DailyMed, Pittsburg Repository (Total 6 sources)

Highly Connected Graph Clustering Algorithms

Predicates	P1	P2	P3	P4	P5	P6	P7	P8	P9
P1	-	2	0	5	2	5	0	2	5
P2	-	-	0	2	2	2	0	2	2
P3	-	-	-	0	0	0	1	1	0
P4	-	-	-	-	3	6	1	5	6
P5	-	-	-) -	-	2	1	4	2
P6	-	-	-	-	-	-	0	2	6
P7	-	-	-	-	-	-	-	1	2
P8	-	-	-	-	-	-	-	-	0
P9	-	-	-	-	-	-	-	-	-

Matrix of First Iteration

Matrix of Second Iteration

Predicates	P1	P2	P3	P5	C1(P6+P9+P4)	P7	P8
P1	-	2	0	2	5	0	2
P2	-		0	2	2	0	2
P3	-	-	-	0	0	1	1
P5	-)	-		•	2	1	4
C1 (P6 + P9+P4)	-				-	0	2
P7	-	-	-		-	-	1
P8	-	-	-	- J	-	-	-

