
Aggregated search in large RDF repositories
Youssef Barhoun, Haytham Elghazel, Mohand-Saïd Hacid, Rafiqul Haque, Thanh-Huy Le

November 24, 2015

Tutelles du LIRIS et Ressources Humaines

5 tutelles (148 permanents)
CNRS (15)

INSA de Lyon (46)

Université Lyon 1 (65)

Université Lyon 2 (9)

ECL (8)

Université Lyon 3 (3)

INRIA (1)

Hors tutelle (1)

Sur 3 campus et
5 bâtiments : 327

Villeurbanne (291)

Bron (16)

Ecully (20)

2

La structure du laboratoire
6 pôles scientifiques et 14 équipes

3

4

http://www.irit.fr/CAIR

Traditional search engines

Motivation (1/4)

A user looking for informations about a given movie actor?

Brad Pitt

News Images
5

Reviews

Consider many documents

Extract relevant information

Syntesize/configure the final answer

Aggregated Search Engine

Motivation (2/4)

Brad Pitt

News Images
6

Reviews

Motivation (3/4)

http://www.sigir2011.org/PDF/keynote-chengxiang-zhai.pdf

7

The phone numbers are provided by the authors.

 T
h

e
n

am
es

 o
f

th
e

p
ap

er
 t

o
p

ic
s

ar
e

p
ro

vi
d

ed
 b

y
th

e
so

u
rc

es

au
th

o
ri

ta
ti

ve
 f

o
r

th
e

U
R

Is
 u

se
d

 t
o

 r
ep

re
se

n
t

th
e

to
p

ic
s;

List of papers and their topics
1 SELECT DISTINCT ?author ?phone WHERE {

2 <http://www.org/conference/wsc/www2011/proceedings>

3 wsc : hasPart ?pub

4 ?pub swc : hasTopic ?topic .

5 ?topic rdfs : label ?topicLabel .

6 FILTER regex (str (?topicLabel) , ”web services” , ”i”) .

7 ?pub swrc : author ?author .

8 {?author owl:sameAs ?authAlt } UNION {?authAlt owl:sameAs
?author}

9 ?authAlt foaf : phone ?phone

Query: phone number of people who authored a Web service related paper at
the World Wide Web Conference 2011 (WWW’11)

Motivation (4/4)

8

Smart Cities: Lyon - http://data.grandlyon.com/

9

Objectives

Aggregation: composing relevant pieces of information,
each piece partially contributes to the answer but together
they form a complete response.

Queries: look for objects that do not exist as such in the
sources, but are built by assembling fragments.

Applications: analytical tasks (opinion analysis, trend
analysis, product comparison, risk analysis, event
summarization, Web services engineering).

Existing systems: Bibliometric systems (list of
publications of an individual + analytical information (rate
of citation for each publication, indicators like h-index, the
list of co-authors)).

10

11

 Semantic: the interpretation of the query (the
problems are related to the "vocabulary
mismatch", the capture of the intent of the user)
and the qualification of the results with regards
to the initial (user) query.

Computational: the combinatorial problem
induced by the choice of fragments and multiple
ways to aggregate them.

Challenges

RDF - Resource Description Framework

Brad

Pitt

12

Actor is

RDF graph
RDF Triple

(<Sujet>,<Prédicat>,<Objet>)

h
tt

p
:/

/w
w

w
.li

n
ke

d
d

at
a.

o
rg

/

Mr & Mrs
Smith

Brad Pitt

genre

has-played-in

Doug
Liman

Actor

has-directed

Action

is

has-playen-in

spouse

Anjolina
jolie

Problem

 Query

 Data set

 Answer
Labeled graphs

q

g1 g2 g3

{g2}

13

Exact matching

Approach: Filtering + Verification

q

g1 g2 g3

ID-List: {g1,g2}

Pattern A:

Not relevant Candidate (Pattern A) Candidate (Pattern A)

Not relevant

Solution

Filtering:

Verification:

14

Existing approaches

 Graph mining: mined patterns - paths

GraphGrep[ICPR’02], treesTreePi[ICDE’06] and

QuickSI[VLDB’08], sub-graphs FGIndex[SIGMOD’07] and

gIndex[SIGMOD’04]

 Filtering : index structure to speed up the search of

patterns in the query gIndex[SIGMOD ’ 04],

FGIndex[SIGMOD’07], QuickSI[VLDB’08]

 Verification : graph isomorphism algorithms (improved

versions of Ullmann’s algorithm) QuickSI[VLDB’08],

TreePi[ICDE’06], FGIndex[SIGMOD’07]

15

Aggregated Search

q

q
g1 g3

+ =

g1

g2

g3

16

Queries

 Variables

 Constants (known resources)

x1

x2

prof

x3 trainee

co-worker

is

supervises

friend

as

17

General processing model

Phase 1

Encoding

Phase 2

Common

Edges
Phase 3

Query

Decomposition

Phase 4

Composition/
Configuration

(SQL-based) Aggregated Search

18

graphID edgeID eLabel sVID sVLabel dVID dVLabel

3 1 group 1 Said 2 DB

3 2 as 1 Said 3 prof

3 3 in 3 prof 4 Univ-Lyon1

5 4 supervises 5 Said 6 Huy

5 5 supervises 5 Said 7 Heni

5 6 is 6 Huy 8 trainee

5 7 is 7 Heni 9 trainee

5 8 co-worker 10 Haytham 6 Huy

5 9 co-worker 10 Haytham 7 Heni

Phase 1: Edge-Edge Encoding Schemes (Sakr and Al-Naymat [1])

Said DB

Univ-
Lyon1

prof

group

in

as

d3

[1] Sherif Sakr and Ghazi Al-Naymat. Efficient relational techniques for processing graph queries, 2010.

Huy trainee

Haytham

is

co-worker Said

Heni

trainee

is
co-worker

d5

Graph DB

Relational DB

encoded

19

graphIDQ graphID edgeIDQ edgeID eLabel sVLabel dVLabel

1 5 1 4 supervises Said Huy

1 5 2 5 is Huy trainee

1 5 3 6 co-worker Haytham Huy

commonedges table

Phase 2: Common edges search

Huy trainee

Haytham

is

co-worker Said

LIRIS

Univ-
Lyon1

in

x1

x2

prof

x3 trainee

co-worker

is

supervises

friend

as

d5

 Discover all edges that belong to both the query graph q and a graph database D.

 Whether all edges in q are present in D.

q

20

query q

qconst.
qano.

verification

valid?

end
false

Aggregate search
true

x1

x2

prof

x3 trainee

co-worker

is

supervises

friend

as

Univ-
Lyon1

in

prof
Univ-
Lyon1

in
x1

x2

prof

x3 trainee

co-worker

is

supervises

friend

as

Phase 3: Query Decomposition

21

AV = {v1, v2,..,vn}
set of variables in

descending order of
degree

v = v1

set of label candidates of v
S= {a1, a2,..an}

Verification
no

Search(q, v, AV, C, R)

yes

End

For each ai in S

qv = query_generator(q, ai);

S= {a1, a2,..am}, m <=n

v = nextVertex(AV);

Search(qv, v, AV, C, R)

v = NULL

R {q}

no

yes

C: set of common
edges

Phase 4: Evaluation & Configuration/Composition

R: final answer (set)

22

Huy
M2
ECD

student
d1

Said Julien

Abdelkader

friend

Univ-
Nantes

in

Vietnam

from

Said

prof

DB
group

Univ-
Lyon1

in

Huy trainee

Haytham

is

co-worker Said

Heni

trainee

is
co-worker

Said Haytham

Huy

friend

Heni
know

d2 d3

d4

d5

Odilon

doctorat Said

is

Fabrice
supervises

d6

prof

as

friend

co-worker

Univ-
Nantes in

q

friend

as

Common edges search

Mohamed

co-worker

x1

x2

prof

x3 trainee

co-worker

is

supervises

friend

as

23

24

Said Julien

Abdelkader

friend

Said

prof

Huy trainee

Haytham

is

co-worker Said

Heni

trainee

is
co-worker

Said Haytham

Huy

friend

d2 d3

d4

d5

co-worker

friend

as

Evaluation & Configuration/Composition

q

x1

x2

prof

x3 trainee

co-worker

is

supervises

friend

as
Heni

Huy

Odilon

Odilon

doctorat Said

is

Fabrice
supervises

d6

prof

as

friend

Mohamed

co-worker

1. Label - candidates
2. Validation
3. Query generator
4. Next variable
5. Recursion

x1

x2

prof

Heni trainee

co-worker

is

supervises

friend

as

x1

x2

prof

Huy trainee

co-worker

is

supervises

friend

as

Said

Fabrice

Said

x2

prof

Heni trainee

co-worker

is

supervises

friend

as

Julien Haytham

Said

Haytham

prof

Heni trainee

co-worker

is

supervises

friend

as

answer 1

Said

Haytham

prof

Huy trainee

co-worker

is

supervises

friend

as

answer 2

[….]
DUPLICATE query AND
SET vLabel = ‘Heni’

WHERE
 vertexID = x3

DUPLICATE query AND
SET vLabel = ‘Huy’

WHERE
 vertexID = x3

SELECT vertices V
FROM common edges c

HAVING
 eLabels = all eLabels of x3

SELECT count(graphID)
FROM common edges c

WHERE
 sVLabel= ‘Heni’
AND dVLabel = ‘trainee’
AND eLabel = ‘is’;

1

SELECT count(graphID)
FROM common edges c

WHERE
 sVLabel= ‘Odilon’
AND dVLabel = ‘trainee’
AND eLabel = ‘is’;

0

Final answer set

x1 x2 x3

1 Said Haytham Heni

2 Said Haytham Huy

Said

Haytham

prof

Heni trainee

co-worker

is

supervises

friend

as

answer 1

Said

Haytham

prof

Huy trainee

co-worker

is

supervises

friend

as

answer 2

25

Architecture

Query Parser

edgeid gqid svlabel elabel dvlabel

AGASearch Self-join

Execution Time

Execution Time

DB

graphID edgeID eLabel sVLabel dVLabel query

Common-edge

26

Benchmark : Data Generation

The Berlin SPARQL Benchmark (BSBM) [2]

[2] Bizer C. & Schultz A. (2009). The berlin sparql benchmark.

Data Sets Size #Triples Execution
Time

Execution
Time

(self-join)

Edge2edge100 25,6 Mb 105124 7,56 min 2,215 s

Edge2edge100_ind 91,5 Mb 105124 3,963 min 1,117 s

Edge2edge10M 2,4 Gb 10036982 >35 min >15 min

Edge2edge10M-ind 7,9 Gb 10036982 >20 min 20,642 s

Edge2edge100M 45,4 Gb 189905757 >40 min >30 min

27

Benchmark Berlin (BSBM)

Data Set 105 118 triples

Queries: 16 queries (Qi,j with i:#variables, j:#constantes)

Environnement: RAM (8 GB), Processor (3.2 GHz)

1

10

100

1000

10000

Ti
m

e
(s

ec
)

Experiments

28

Cost of each phase

Verification time > 70% of the total time

More than 95% of the selected candidates are not relevant

Requête #ValidCandidates #NonValidCondidates

Q1,1 100 0

Q1,2 200 89

Q1,3 300 89

Q1,4 400 183

Q2,1 12879 12579

Q2,2 21380 21277

Q2,3 32059 31950

Q2,4 32170 31951

Q3,1 13079 12579

Q3,2 21502 21372

Q3,3 32181 31951

Q3,4 42740 42529

Q4,1 162879 157757

Q4,2 22880 22745

Q4,3 22856 22739

Q4,4 44238 44101

73%

1%

26% Verification

CE

Query generation

29

30

Results
Ti

m
e

(s
ec

)

iseeker

31

A SPARQL Query Which Topic is Politics:

 SELECT ?president ?party ?page
 WHERE
 {
 ?president <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/President> .
 ?president <http://dbpedia.org/ontology/nationality> <http://dbpedia.org/resource/United_States> .
 ?president <http://dbpedia.org/ontology/party> ?party .
 ?x <http://data.nytimes.com/elements/topicPage> ?page .
 }

 Three SPARQL EndPoints:

http://dbpedia.org/sparql http://ibm.rkbexplorer.com/sparql/ http://factforge.net/sparql/

Example

32

http://dbpedia.org/sparql
http://ibm.rkbexplorer.com/sparql/
http://ibm.rkbexplorer.com/sparql/
http://factforge.net/sparql/
http://factforge.net/sparql/

33

34

35

 The execution of iSeeker for the

second time.

36

37

We selected four Sparql queries and six endpoints recommended by Fedbench. The

queries are available online(*), The selected queries cover three different topics

including politics, movies, and geographical location.

* https://code.google.com/p/fbench/

38

39

Query Annotator (1/2)

SELECT DISTINCT ?drug ?enzyme ?reaction
Where {
 ?drug1 drugCategory antibiotics .
 ?drug2 drugCategory antiviralAgents .
 ?drug3 drugCategory antihypertensiveAgents .
 ?I1 interactionDrug2 ?drug1 .
 ?I2 interactionDrug1 ?drug .
 ?I1 interactionDrug1 ?drug .
 ?I2 interactionDrug2 ?drug2 .
 ?I3 interactionDrug2 ?drug3 .
 ?I3 interactionDug1 ?drug .
 ?drug keggCompoundId ?cpd .
 ?enzyme xSubstrate ?cpd . ?drug owl:sameAs ?drug5.
 ?enzyme rdf:type Enzyme . ?reaction xEnzyme ?enzyme.
 ?reaction equation ?equation . ?drug5 rdf:type Drug .
}

40

Query Annotator (2/2)

Fu-Berlin Drugbank (S1), Fu-Berlin DBCategory (S2), DBPedia (S3), ChEBI (S4),

SIDER(S5), LinkedCT (S6), Pittsburg repository (S7), DailyMed (S8), KEGG (S9) and

Bio2RDF(S10).

41

Highly Connected Graph Clustering Algorithms

42

43

