Ontological formalisation of mathematical equations for phenomic data exploitation

Felipe Vargas-Rojas

Supervisors: Danai Symeonidou, Llorenç Cabrera-Bosquet, François Tardieu

Seminar In-OVIVE

September, 2021

Multi-scale, multi-source, heterogeneous

Plant phenomics datasets are in nature

- PO: <u>http://obofoundry.org/ontology/po</u>
- AgrO: <u>http://obofoundry.org/ontology/agro</u>
- CO: https://www.cropontology.org

Plant phenomics community has adopted Semantic Web

Traditional systems

(PHIS, <u>www.phis.inra.fr</u>, Neveu et al., 2019)

- Several Apps
- **0** integrations

PHIS, an ontology-based information system

- Several Apps
- Several integrations

Ontologies

New facts

Reasoning services for harmonising data

Numerous equations relate plant phenomic traits

Ontologies

Facts

URI	height (m)	weight (kg)
:john	1,80	80
:peter	1,50	70
:camilo	1,60	65
:alexa	1,70	62
:maria	1,75	78

New facts

URI	BMI
:john	24,691358
:peter	31,111111
:camilo	25,390625
:alexa	21,4532872
:maria	25,4693878

Following the reasoning logic

Different units

height	units
1,80	m
1,70	m
68,89	inches

Increasing the complexity

How can mathematical relationships in the form of simple equations be represented and annotated using semantic web approaches?

How to automate the harmonisation of quantity values in a given context exploiting ontologies and metadata? (e.g. exploit unit ontologies)

How to use inference services to automate the calculation and assignment of quantity values derived from such mathematical relationships?

Research questions

Lack of studies exploiting inference services

Representing and computing mathematical expressions

Ontology-based Information representation

- Function ontology (Meester et al. 2016)
- Unit ontologies (OM, UO, QUDT)
- OpenMath + RDF (Wenzel & Reinhardt, 2012)
- No info about how to perform the computation

RDF/OWL data

Ontological reasoning

- Extend a query rewriting algorithm (Bischof et al, 2013),
- New datatype (Parsia et al., 2008)
- Semantic Web Rules (SHACL, SWRL)
- No use of unit ontologies
- Equations structured as text

Query

SPARQL extensions

- Query structure different from mathematical objects
- Lack of modularity
- A query is not FAIR

• Extend SPARQL functions (Hogan et al., 2020)

Query

Representation features

- 1. FAIR equations
- 2. Based on ontology terms
- 3. Based on W3c recommendation (e.g. RDF)

Reasoning & computation features

- 1. Perform equations
- 2. Derive new facts
- 3. Exploit domain ontologies (e.g. units)

We propose an ontological framework

Research methodology and approach

Use metadata from unit ontologies to infer and unify heterogenoeus measurement

> Perform Unit Conversion

Normalise the temperature observation depending on contextual data from crops

 $cm \rightarrow m$

Temperature → *Thermal Time*

Two case studies

Dimension units

Light units

$$1 m^2 = 10000 cm^2$$
$$1 cm^2 = 1 m^2 \times 10^{-4}$$

Global Solar Radiation (**Rs**) Photosynthetically active radiation (**PAR**)

$$R_s(J\cdot cm^{-2}) \to PAR(\mu mol \cdot m^{-2}s^{-1})$$

Perform unit conversion

(i.e. growing degree units) a process handled by biologists and agronomists used to normalise several temperature-dependent processes such as leaf-progression.

Thermal time definition

Bilinear Model

if $T > T_0 \le T_{opt}$ then $T - T_0$ if $T > T_{opt} \le T_{max}$ then $T - T_{max}$

Thermal time equation

Assessing the equation representation

Assessing the unit conversion modulo

Which one is better for unit conversion?

Assesing the framework

Assessing the nested equation.

- + FAIR equations
- + Effective use of domain ontologies (units)
- + Enrich existing data with derived values

Therefore, the neglected numerical relationships will be easier to express and accionable

The framework can be used by others domains dealing with numerical attributes and mathematical equations.

Conclusions

THANK YOU

luis-felipe.vargas-rojas@inrae.fr @LuisVargasRo Supervisors:

Danai Symeonidou
Llorenç Cabrera-Bosquet
François Tardieu

See also: Vargas-Rojas, F. (2021, June). Ontological Formalisation of Mathematical Equations for Phenomic Data Exploitation. In *European Semantic Web Conference* (pp. 176-185). Springer, Cham.

