

Pauline Armary pauline.armary@u-bourgogne.fr CIAD - University of Burgundy Anabasis Assets **FRANCE**

- Cheikh-Brahim El-Vaigh, CIAD UBE
- Antoine Spicher, Anabasis-Assets
- Christine Lahoud, CIAD UTBM
- Hajer Bazaoui, ETIS CY University
- Ouassila Narsis. CIAD UBE
- Christophe Nicolle, CIAD UBE

Fig. 1. AIOGO modular ontology

Ontology Objects	Number
Class	181
Object Property	93
Data Property	33
Individual	96
DL Expressivity	SHIF(D)

- State of the Art Learning Rules for Ontology
- Methods Identifying Patterns in Text
 - Experiments and Results on Translation and Reasoning
- Conclusion

- State of the Art Learning Rules for Ontology
- Methods Identifying Patterns in Text Dependency Parsing Tree
 - Named Entity Recognition
 - Co-reference Resolution

 - Experiments and Results on Translation and Reasoning
- Conclusion

Figure: $\forall x [(Plate(x) \land \neg BeginWith(x, number34)) \rightarrow \neg BeFrom(x, Istanbul)]$

Timothy John Berners-Lee Person (born 8 June 1955 DATE), also known as Timbl Person , is an English NORP computer scientist best known as the inventor of the world wide web propuct, the HTML markup language, the URL system, and HTTP. He is a professorial research fellow at the University of Oxford org and a professor emeritus at the Massachusetts Institute of Technology org MIT org). Berners-Lee PERSON was born in London GPE on 8 June 1955 DATE, the son of mathematicians and computer scientists. Mary Lee Woods PERSON (1924–2017) and Conway Berners-Lee PERSON (1921–2019). His parents were both from Birmingham GPE and worked on the Ferranti Mark 1 PRODUCT, the first ORDINAL commercially-built computer. He has three CARDINAL younger siblings; his brother. Mike PERSON is a professor of ecology and climate change management.

If the children through the ball too far, they will loose it.

Grammatical Patterns	FOL translation	Axioms
SVO	$S(x) \wedge O(y) \wedge v(x,y)$	Conjunction
S NEG V O	$S(x) \wedge O(y) \wedge \neg v(x,y)$	Negation
S_1 [and] S_2 V O	$[S_1(x) \wedge O(y_1) \wedge v(x,y_1)] \wedge$	Conjunction
	$[S_2(z) \wedge O(y_2) \wedge v(z,y_2)]$	
S_1 [or] S_2 V O	$[S_1(x) \wedge O(y_1) \wedge v(x,y_1)] \vee$	Disjunction
	$[S_2(z) \wedge O(y_2) \wedge v(z,y_2)]$	
Noun [which/that] $\sf V$ O	$\exists y[N(x) \land O(y) \land v(x,y)]$	Class expression
		with Ex. restriction
S V Attr	$S(x) \rightarrow A(x)$	Concept Inclusion
IF S V_1 O_1 , S V_2 O_2	$[S(x) \wedge O_1(y) \wedge v_1(x,y)] \rightarrow$	General Concept
		Inclusion
	$\forall x[S(x) \rightarrow (O(y) \land v(x,y))]$	Universal restriction
	$v(\alpha, \beta)$	Relation assertion
S[NE] V Attr	$A(\alpha)$	Concept Assertion
Noun [which/that] V O S V Attr IF S V_1 O_1 , S V_2 O_2 S[Plural] V O S[NE] V O[NE]	$ \begin{aligned} & [S_1(x) \land O(y_1) \land v(x, y_1)] \lor \\ & [S_2(z) \land O(y_2) \land v(z, y_2)] \\ & \exists y [N(x) \land O(y) \land v(x, y)] \end{aligned} $ $ \begin{aligned} & S(x) \to A(x) \\ & [S(x) \land O_1(y) \land v_1(x, y)] \to \\ & [O_2(z) \land v_2(x, z)] \\ & \forall x [S(x) \to (O(y) \land v(x, y))] \end{aligned} $	Class expression with Ex. restriction Concept Inclusion General Concept Inclusion Universal restriction Relation assertion

- State of the Art Learning Rules for Ontology
- Methods Identifying Patterns in Text
- Experiments and Results on Translation and Reasoning Ontology enrichment

 - Translation experiment
 - Conclusion

Figure: MyFood Wiki Website: https://wiki.myfood.eu/docs/getting-started

	Sentence	Summer vegetables should be grown in the Zipgrow tower.
	SWRL Translation summer-vegetable($?x$) \rightarrow grow-in($?x$, theZipgrowtowe	
	Attempto CNL	If a summer-vegetable X, then X grow-in theZipgrowtower
Table: Rules Translation		

Sentence	Here's a summary of the quantities, frequencies, and methods for adding them depending on the season.	
SWRL Translation Attempto CNL	summary-of-for(?y) & be-here(?y) a summary-of-for Y and a be-here Y	

Table: Non-Rule Translation

	Initial Onto.	New Onto.
Classes	98	356
Object Prop.	85	329
Rules	0	240

	Rules	Non Rules (base)
Number	240	515
BLEU	2.41	2.09
ROUGE	44.99	23.27

- State of the Art Learning Rules for Ontology
- Methods Identifying Patterns in Text
- Experiments and Results on Translation and Reasoning
- Conclusion

- Main Results and Contribution
 - Application of an neuro-symbolic method for extracting rule in the agriculture domain
 - New methodology for evaluating the extraction and translation in the absence of a Gold Standard with the use of Controlled Natural Language (CNL) and translation metrics

Main Results and Contribution

- Application of an neuro-symbolic method for extracting rule in the agriculture domain
- New methodology for evaluating the extraction and translation in the absence of a Gold Standard with the use of Controlled Natural Language (CNL) and translation metrics

Future Directions

- Integrate grammatical patterns, to capture further information like numerical information (measures, numbers), imperative verbs
- Explore the capacities of upper and mid-level ontologies to provide frameworks for translating complex grammatical structure (verbs with 2 complements)
- Evaluate the coherence of the rules and concepts extracted to increase the inference capacity of the system

pauline.armary@u-bourgogne.fr

Thank you

Appendix