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Abstract

Discovering causal relations in a knowledge base represents
nowadays a challenging issue, as it gives a brand new way
of understanding complex domains. In this paper, we present
a method to combine an ontology with a probabilistic rela-
tional model (PRM), in order to help a user to check his/her
assumption on causal relations between data and to discover
new relationships. This assumption is important as it guides
the PRM construction and provide a learning under causal
constraints.

Introduction
In order to analyze and understand complex domains, a good
representation of the causal relations between the different
variables considered is valuable. In this article, we intro-
duce a method that offers a probabilistic reasoning over a
knowledge base structured by an ontology in order to dis-
cover new causal relations. Ontologies allow data and ex-
pert knowledge to be gathered and semantically organized,
thus allowing a better understanding of complex domains.
However, they cannot provide complex probabilistic reason-
ing. We propose to achieve this by using probabilistic re-
lational models (PRMs) (Friedman et al. 1999). PRMs ex-
tend BNs with the notion of classes from the domain of re-
lational databases, thus allowing a better representation be-
tween the different attributes. However, due to this speci-
ficity their learning can be tricky. Using the semantic and
structural knowledge contained in a knowledge base struc-
tured by an ontology, this learning can be greatly eased and,
thus, be guided toward a learned model close to the real-
ity described by the ontology (Munch et al. 2017). However,
different PRMs can be defined from a same knowledge base.
Thus, in order to select one, we consider a causal assumption
given by a user (a domain expert) of the form “Does attribute
A have a causal influence over attribute B?” that he wants
to be checked as true or false. The first section of this pa-
per presents the background and state of the art, especially
on PRM and causal discovery. The second section presents
our approach to learn a PRM from an ontology guided by a
user’s causal assumption, and an experiment on a transfor-
mation process. The last section concludes this paper.
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Background and state of the art
A BN is the representation of a joint probability over a set of
random variables that uses a Directed Acyclic Graph (DAG)
to encode probabilistic relations between variables. How-
ever, in this paper we need to group attributes by specific
causal relations and BN lack the notion of modularity. PRMs
extend the BN representation with a relational structure be-
tween potentially repeated fragments of BN called classes
(Torti, Wuillemin, and Gonzales 2010). PRMs are defined by
two parts: a high-level, qualitative description of the struc-
ture of the domain that describes the classes and their at-
tributes (i.e. the relational schema RS as shown Fig. 1 (a)),
and a low-level, quantitative information given by the prob-
ability distribution over the different attributes (i.e. its rela-
tional model RM as shown in Fig. 1 (b)). Once instantiated
the classes are equivalent to a BN.

An essential graph (EG) is a semi-directed graph associ-
ated to a BN. They both share the same skeleton, but the ori-
entation of the EG’s edges can vary. If the orientation of an
edge is the same for all the BNs in the same Markov equiva-
lence class, then it is also oriented in the EG (they are called
essential arcs (Madigan et al. 1996)); if not, it remains un-
oriented. This way the EG expresses whether an orientation
between two nodes can be reversed without modifying the
probabilistic relations encoded in the graph: whenever the
constraint given by an essential arc is violated, the condi-
tional independence requirements are changed and the struc-
ture of the model itself has to be changed.

Numerous related works have established that using con-
straints while learning BNs brings more efficient and ac-
curate results, for parameters learning (De Campos and Ji
2008) or structure learning (De Campos, Zhi, and Ji 2009).
In this article we define structural constraints as an ordering
between the different variables. The K2 algorithm (Cooper
and Herskovits 1992), for instance, requires a complete or-
dering of the attributes before learning a BN, allowing the in-
troduction of precedence constraints between the attributes.
This particular algorithm needs a complete knowledge over
all the different attributes precedences; however problems
of learning with partial order have also been tackled (Parvi-
ainen and Koivisto 2013). In our case we will likewise tran-
scribe incomplete knowledge as partial structural organiza-
tion for the PRM’s relational schema in order to discover
new causal relations.



Causal models are DAGs allowing one to express causal-
ity between its different attributes (Pearl 2009). Their con-
struction is complex and requires interventions or controlled
randomized interventions, which are often difficult or im-
possible to test. As a consequence the task of discover-
ing causal relations using data, known as causal discov-
ery, has been researched in various fields over the last
few years. There are two types of methods for struc-
ture learning from data: independence-based ones, such
as the PC algorithm (Spirtes, Glymour, and Scheines
2000), and score-based ones, such as Greedy Equivalent
Search (GES) (Chickering 2003). Usually independence-
based methods give a better outlook on causality between
the attributes by finding the ”true” arc orientation, while the
score-based ones offer a structure that maximizes the like-
lihood considering the data. Finally, other algorithms such
as MIIC (Verny et al. 2017) use independence-based algo-
rithms to obtain information considered as partially causal
and thus allowing to discover latent variables. In this arti-
cle we propose to explore if combining ontological knowl-
edge and a user’s causal assumption with BN learning score-
based algorithms allows causal discovery. Other works have
already proposed the use of EG: (Hauser and Bühlmann
2014) for instance proposes two optimal strategies for sug-
gesting interventions in order to learn causal models with
score-based methods and the EG. Integrating knowledge
in the learning has also been considered: (Ben Messaoud,
Leray, and Ben Amor 2009) offers a method to iterative
causal discovery by integrating knowledge from beforehand
designed ontologies to causal BN learning, and (Amirkhani
et al. 2017) proposes two new scores for score-based algo-
rithms using experts knowledge and their reliability. While
PRM offers a way to express and consider the expert knowl-
edge in learning, to the best of our knowledge no learn-
ing causality method that combines PRM and ontological
knowledge and is guided by a user’s causal assumption has
been proposed yet.
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Figure 1: The high (a) and low (b) level structures of a PRM

Causal discovery driven by an ontology
In this article we present a four-steps method in order to
learn a PRM using ontological kowledge guided by a causal
assumption: (1) the user expresses expert knowledge in a
causal form “The attribute A has a causal influence over the
attribute B” that he/she wants to check in a given knowledge
base structured by an ontology; (2) the attributes of the users
causal assumption are used to define, from the knowledge
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Figure 2: Excerpt of a knowledge base about transformation
processes

base, the attributes of two classes in the RS, the explain-
ing and consequence classes; (3) the attributes previously
defined for each class of the RS are enriched with new at-
tributes from the knowledge base, judged as interesting by
the user for the causal assumptions study; (4) using the de-
finedRS a PRM is learned, whose analysis will help us vali-
date the users causal assumption and in the end uncover new
causal relations.

Preliminaries definitions
A knowledge base KB is defined by a couple (O, F) where:
• the ontology O = (C , DP,OP,A) is defined in OWL1

by a set of classes C , a set of owl:DataTypeProperty DP
in C ×TD with TD being a set of primitive datatypes (e.g.
integer, string), a set of owl:ObjectProperty OP in C ×
C , and a set of axioms A (e.g. subsumption, property’s
domains and ranges).

• the knowledge graph F is a collection of triples (s, p, o)
in RDF2, called instances, where s is the subject of the
triple, p is a property that belongs to DP ∪ OP and o
is the object of the triple; for a triple (s, p, o), we note
domain(p) = s and range(p) = o.

Fig. 2 gives an excerpt of the PO2 ontology3 dedicated to
transformation processes (on the top) associated with a small
example of F in the bottom. O is composed of four main
classes: the step class, that defines the different steps and
how they are linked together in time; the participant class,
that defines the different objects used during the step (e.g.
electronic scale, mixtures); the observation class, that de-
fines the observations made on the participants. The class
attribute characterizes the participants. Using the previous
notations, Step ∈ C , Unit ∈ TD, hasForParticipant ∈ OP ,
hasForValue ∈ DP . Fig. 3 gives an example of a knowledge
graph using this ontology.

The user’s causal assumption H is of the form: “E1, ...,
En have a causal influence on C1, ..., Cp” with Ei an ex-
plaining attribute and Cj a consequence one. We denote the
sets of the attributes of H as AH

E = {E1, ..., En} and AH
C

= {C1, ..., Cp}, with AH = AH
E ∪ AH

C . Using the instanti-
ated transformation process of Fig. 3, a user’s assumption

1https://www.w3.org/OWL/
2https://www.w3.org/RDF/
3http://agroportal.lirmm.fr/ontologies/PO2
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Figure 3: Example of a transformation process using the PO2

ontology. hfP: hasForParticipant, hfO: hasForObservation,
hfA: hasForAttribute

Hf over our PO2 example could be : ”The attributes of p1
and p2 have an influence over o4, o5”, with AH

E = {a1, a2,
a3} and AH

C = {o4, o5} (grayed out on the figure). In or-
der to construct a PRM as close as possible to the causal as-
sumption provided by the user, we define a genericRS com-
posed of two different type of classes, the explaining and
the consequence, whose attributes are respectively denoted
as explaining and consequence attributes. Distinguishing be-
tween them influences the causal discovery: if a relation is
found between an explaining and a consequence attribute,
the direction of causality is automatically determined from
the explaining attributes to the consequence ones. We define
this as a causal constraint. The class order guides the PRM
learning, as we restrain our set of possible structures only to
those that respect these causal constraints. Once the RS de-
fined, we need to select attributes to fill the classes. Since the
probabilistic dependencies are learned using a score-based
Bayesian learning method (denoted M ), then it depends on
statistical evaluation. Thus not all attributes from a knowl-
edge base can be selected: they have to fit certain conditions,
and be useful for the learning. In a knowledge base KB we
call useful learning attribute an attribute a that is not con-
stant and whose set of values is bound. These useful learning
attributes correspond in KB to datatype properties p ∈ DP .
In our example (Fig. 3), if we consider that all instances of
a same attributes have the same unit, then the datatype prop-
erty hasForUnit is not useful.

Assumption’s Attributes Identification
In order to identify the attributes of the explaining and con-
sequence classes of theRS, we propose to build the set SKB

H
of all useful learning datatype properties of KB correspond-
ing respectively to the explaining and consequence causal
assumption’s attributes. To do so we start from each attribute
a of AH of the assumption H, and construct the set Sa of
its corresponding datatype properties in KB. First we use
a similarity measure (e.g. Jaccard measure) to compute for
each attribute a ∈ AH the similarity between its name and
a KB entity’s label. If it is higher than α (α experimentally
fixed in [0,1]), we have: (i) if the entity is a datatype prop-
erty, it is added to Sa; (ii) if the entity is a class, all of its
datatype properties are added to Sa; (iii) if the entity is an
object property, its range and domain classes are gathered,
and we apply (ii). Second, for each datatype property added
we check whether they are useful for the learning and, if not,
we exclude them from the set. For all Sa we also verify that
a connected knowledge graph can be constructed from their

union, to prevent cases where each datatype property has in-
dividually enough instantiations, but not enough global in-
stances that link them together. Last, the user checks each
Sa and can choose to exclude datatype properties he judges
inadequate. In the end, for each attribute a, its set Sa is ei-
ther entirely checked or empty: in this last case, it means that
the attribute a is not relevant for KB, and that H cannot be
checked. In our example, Hf defines three participants a1,
a2 and a3 considered as explaining, and two observations o4
and o5 considered as consequence. Only the useful hasFor-
Value datatype property is selected. As a consequenceH can
be checked.

Enriching the set of PRM attributes
Most of the time the attributes expressed inH are not enough
to find causal relations between data, requiring to find other
useful learning attributes to improve the RS building. We
make successive iterations on the knowledge graph over the
properties, starting from the entities found previously, and
following the other to which they are linked if there have
enough instances. If we find a datatype property through a
path with enough instances, it is added if it is useful for the
learning and relevant. When adding a datatype property, the
user has to decide in which class he wants to put it: if he
doesn’t know, it is put in the higher explaining class by de-
fault. In our PO2 example the other participants’ values at-
tributes and observations are selected. The separation into
steps induces the need for new classes: we want to be able to
separate for each step explaining and consequence attributes.
As a matter of fact, if we consider that each step happens at
a distinct moment, and that attributes can only be explained
by those that happen at the same time or before, then we
need to define at least one explaining and one consequence
class for each step (i.e. for each considered time). Fig. 4 (b)
presents the RS defined to answer these constraints.

PRM construction
We learn a PRM using our RS, a learning method M and
the knowledge graph of KB. In order for the user to check
the model, we propose an interactive and iterative method
based on the study of the EG. Considering that the PRM
has been learned under causality constraints (given by the
user), the EG helps to determine causal relations: if an edge
is oriented in the EG, then it is said causal assuming that
(1) the data we dispose is representative of the reality, (2)
all the attributes interesting for the problem are represented
and (3) the causal information brought by the user is consid-
ered as true. We make two verifications: a first one for the
inter-classes relations, and a second one for the intra-class
relations. The EG inter-classes relations are the first to be
presented to the user since they are the one he had direct
control over: if he detects a wrong orientation, it means that
the RS has been badly constructed and has to be modified.
The intra-class relations are then presented. In the case of
a non oriented relation in the EG, the user can choose to
keep its orientation as it is in the learned PRM or inverse it,
which would require a modification of the currentRS. Like-
wise, if a relation is oriented, then the user can also choose
to keep this orientation, or declare it wrong according to his
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Figure 4: Comparison of the model used to generate the
database (a) with the learned EG using the RS (b).

knowledge of the domain. In this last case a modification of
theRS is also required. When modifying theRS, two cases
are possible: if one of the node only needs to change class,
then the same class structure are kept in the RS; otherwise
new classes need to be introduced.

From the knowledge graph of Fig. 3 and the probabilis-
tic relations that we have defined in Fig. 4 (a), we generate
a dataset of 5000 different instances (165,000 RDF triplets)
and apply our mmethod. Fig. 4 (b) shows the EG learned.
All relations except for one inter-class are oriented, meaning
that considering our knowledge base, the constraints brought
both by the ontology (i.e. time constraint) and the causal as-
sumption, only one result is possible. Using it, we can see
that p1 and p2 do not explain o4 and o5: Hf is therefore not
checked.

Conclusion
In this article we present a method to integrate expert knowl-
edge into a learning in order to discover new causal relations
in a knowledge base. A user’s causal assumption helps de-
fine the RS of a PRM, used for its learning. Since the RS
has been defined under causal constraints we deduce that the
EG’s oriented arcs of the PRM transcribe potential causal
relations. In this paper we presented a possible application
using a knowledge base about transformation processes and
data generated from the PO2 ontology. On an other exper-
iment we applied our method on the part of the DBPedia
ontology dedicated to films (which represented 90,000 RDF
triplets for 10,000 films). With our two experiments4 we
have shown that (1) this method offers an interactive and
iterative solution to integrate expert knowledge to a causal
discovery task; and (2) this integration of expert knowledge
bring an overall improvement of the quality of the model
learned. This work is a first step to tackle interactive and it-
erative machine learning combining ontology and PRM in
order to improve the learned relational model using expert
knowledge. Our future work will focus on the iterative part
studying BN’s introspection to find and explain causality re-
lations in a semi-automatic way allowing an ontology’s en-
richment with expert rules that will improve the learning.

4All data and code relevant to the experiments are available at:
https://bit.ly/2RYVjG8
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