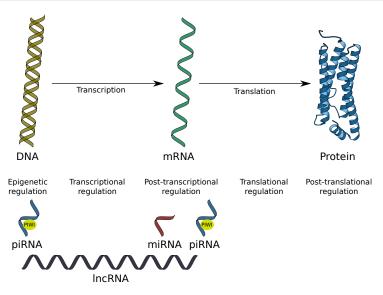
AskOmics: Integration and Interrogation of Genomic and PostGenomic Regulation Networks

Charles Bettembourg^{1,2}, Olivier Dameron^{3,1,2}, Anthony Bretaudeau^{4,5}, Fabrice Legeai^{4,6}

 1 CNRS, UMR IRISA / 2 INRIA, UMR IRISA, Dyliss / 3 Université Rennes 1 4 INRA, UMR IGEPP, BIPAA / 5 INRIA, UMR IRISA, Genouest / 6 INRIA, UMR IRISA, Genocale

Atelier IN-OVIVE - 29 juin 2015

Pea aphid phenotypic plasticity


MiRNAdapt ANR Project

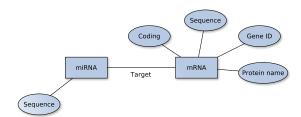
Context

- Identify gene functions involved in the pea aphid phenotypic plasticity
 - ► Sexual reproduction
 - ► Asexual reproduction
- PhD work (Valentin Wucher)
 - Post-transcriptional regulation network between microRNAs and mRNAs
 - ► Kinetic expressions change depending on the embryogenesis
- Regulation network enrichment
 - ▶ piRNAs
 - ▶ IncRNAs
 - additional informations

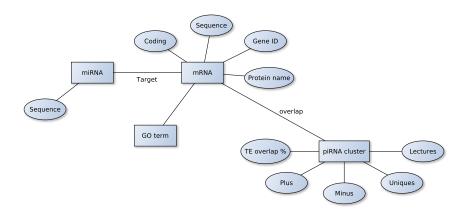
RNA Regulation

Context

Data inventory


Context

- 36939 coding transcripts (mRNAs)
- 2172 long non coding transcripts (IncRNAs)
- 6059 overlaps between the coding transcripts and the lncRNAs
- 802 micro RNAs (miRNAs)
- 4998271 pairings between the transcripts and the miRNAs
- 77811 piRNAs clusters
- 99382 overlaps between the transcripts and the piRNAs
- 10062 coding transcripts are annoted by 41030 Gene Ontology terms
- Difference of expression between sexual and asexual Aphid pea embryogenesis for:
 - ► 4996 coding transcripts
 - ► 370 long non coding transcripts
 - ▶ 15 micro RNAs
 - ► 408 piRNAs clusters


Linked data

Linked data

Linked data

Biologists files

correspondance mirdeep2 mirbaseNom seq5p3p.csv

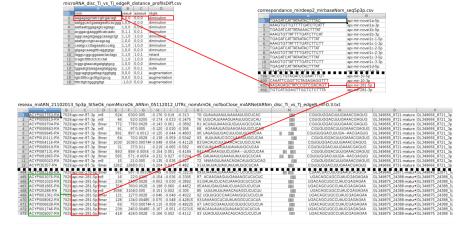
	A	В			
1	TGAGATCATTATAATACTTTAC	api-mir-novel1a-5p			
2	AAAGTGTTGTTTTGATCTCATT	api-mir-novel1a-3p			
3	TGAGATCATTATAAAACTTTAT	api-mir-novel1b-5p			
4	AAAGTGTTATTTTGATCTTCAT	api-mir-novel1b-3p			
5	TGAGATCATTATAATACTTTAT	api-mir-novel1c-1-5p			
6	AAAGTGTTATTTTGATCTTCTT	api-mir-novel1c-1-3p			
7	TGAGATCATTATAATACTTTAT	api-mir-novel1c-2-5p			
8	AAAGTGTTATTTTGATCTTCTT	api-mir-novel1c-2-3p			
9	TGAGATCATTATAATACTTTAT	api-mir-novel1c-3-5p			
10	AAAGTGTTATTTTGATCTTCTT	api-mir-novel1c-3-3p			
11	TGAGATCATTATAATACTTTAT	api-mir-novel1d-5p			
1.2	A A A ATCTTATTITGATCTTCTT	ani-mir-novel1d-3n			
799	TACCCTGTAGATCCGAATTTGT	api-mir-10-5p			
800	CAAATTCGGTTCTAGAGAGGTTT	api-mir-10-3p			
801	AAGAGAGCTATCCGTCGACAGT	api-mir-281-5p			
802	TGTCATGGAGTTGCTCTCTTA	api-mir-281-3p			

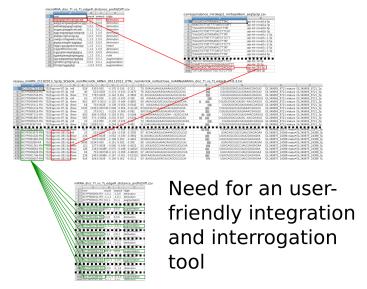
Problem 0

Biologists files

microRNA disc Ti vs Tj edgeR distance profilsDiff.csv

		nom	sexué	asexué	règle
	2	aagagagctatccgtcgacagt	0,0	0,0,0	diminution
	3	aatggcactgaaagaattcacggg	1,0,0	0,0,0	diminution
	4	aattaattggagagtcagtagc	1,0,0	0,0,0	diminution
- [5	acggacgaaggtttcatcaatc	0,1,1	0,0,1	diminution
- [6	aggcaagatgaggcaaagctgt	1,1,0	1,0,0	diminution
	7	atattgtcctgtcacagcag	1,0,0	0,0,0	diminution
	8	caatgcccttagaaatcccatg	1,1,0	1,0,0	diminution
	9	gtgagcaaagtttcaggtgtgc	1,0,0	0,0,0	diminution
	10	taggccggcggaaactactagc	1,1,0	1,0,1	retard
	11	tcagtctttttctctctctat	1,1,0	1,0,0	diminution
	12	teggegtaacatgatgtgtgeg	1,0,0	0,0,0	diminution
	13	tggaatgtaaagaagtatggag	1,1,0	0,0,1	nulle
- [14	tggcagtgtgattagctggttgtg	0,0,0	0,0,1	augmentation
	15	tgtctttttccgctttgctgccg	0,0,0	0,0,1	augmentation
	16	ttttcttgtctgggtgttgt	-1.0.0	0.0.0	augmentation


correspondance mirdeep2 mirbaseNom seq5p3p.csv


ontext Problem Data integration Data interrogation Conclusion

OO OO OOOO OOOOO

Biologists files

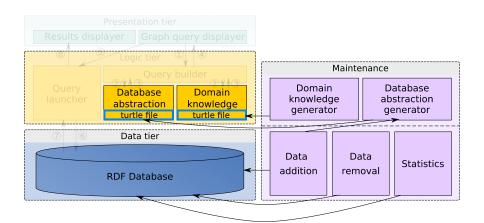
Biologists files

Linking data using triples

7 / 17

Linking data using triples

Subject Predicate Object


Resource Description Framework

- RDF allow to store the information in the form of triples
- Several syntaxes for this purpose
 - ▶ RDF/XML
 - ► Turtle
 - ► N-Triples
 - ▶ N3

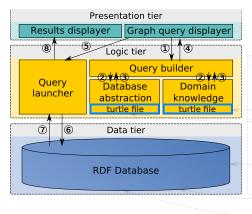
Integration work

Parse all the data describing our RNA regulation network in order to build an RDF database

AskOmics: Integration

- Numerous solutions for automatic conversion:
 - ▶ RDF123¹
 - ► XLWrap¹
 - ▶ csv2rdf4lod¹
 - ▶ Tarql¹
 - ▶ Datalift²
- Difficult in case of heterogeneous files
- Custom scripts dedicated to each source file
- New generic import script for standardized source files (and guidelines for biologists)
- http://www.w3.org/wiki/ConverterToRdf
- ² http://mondeca.com/index.php/en/

Generating additional RDF while source files conversion


- Database abstraction
 - ► Description of all classes, data properties and object properties
 - ► Useful for the interrogation part of AskOmics
 - ► Generated on the fly during data conversion
- Domain knowledge
 - Customizable additional information facilitating interrogation process:
 - **★** Startpoints definition
 - ★ Shortcuts definition
 - ★ Define hidden classes to the user

Use case #1

We want to obtain the messengerRNA cis-regulated by a IncRNA and being also the target of a microRNA. We want each of these RNA to have a differential trend of expression comparing sexual and asexual Aphid peas, this trend being "increase" for the microRNA.

PREFIX : PREFIX : http://www.irisa.fr/dyliss/base/ SELECT DISTINCT ?messengerRNA1 ?IncRNA1 ?microRNA1 WHERE { ?messengerRNA1 a :messengerRNA . ?IncRNA1 a :IncRNA . ?IncRNA1 :cis_regulates ?messengerRNA1 . ?microRNA1 a :microRNA . ?microRNA1 :has_target ?messengerRNA1 . ?messengerRNA1 :studied_in/:has_results/:trend ?trend1 . ?IncRNA1 :studied_in/:has_results/:trend ?trend2 . ?microRNA1 :studied_in/:has_results/:trend ?trend3 . FILTER (regex(str(?trend3), "increase", "i")) .

AskOmics: Interrogation

Simple use case with AskOmics

All microRNA targeting a lncRNA, alltogather having a differential trend between sexual and asexual Aphid peas.

Simple use case with AskOmics

Simple use case with AskOmics

PREFIX: PREFIX: http://www.semanticweb.org/cbettemb/ontologies/2014/6/aphidontology#>

SELECT DISTINCT ?microRNA0 ?incRNA6 WHERE {

?microRNA0 a :microRNA . 7IncRNA6 a :IncRNA

?microRNA0 :has target PincRNA6 . ?trendBetweenTwoExperimentalValues4 a :trendBetweenTwoExperimentalValues

?microRNAO:studied_in/.has_differential_results/.trend?trendBetweenTwoExperimentalValues4. ?trendBetweenTwoExperimentalValues8 a .trendBetweenTwoExperimentalValues. ?IncRNA6 :studied in/has differential results/.trend?trendBebyeenTwoExperimentalValuesB

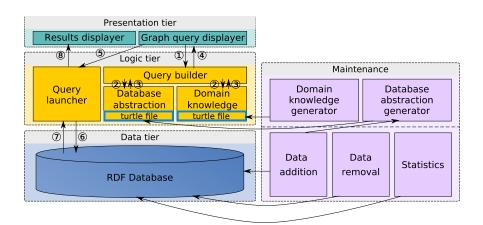
30 first results

ani no 2010 Sa

microRNA0	IncRNA6
agi min 3019 Sp	TCONS_CRRONO
apr no 3010 fg	TCONE_CES12168
ap-mi+3019-5p	**CONS_CERRORIUM
Ap-m+3011-5p	NONS_CREZZOR
ap-m-2011-5p	TCONS_CERAGOR
apinix2016.fg	FCONT_CESTINGER
ap-m+301b-5p	TC0N2_0022007
spinis-2019-5p	TC0N2_C039040
sqi-m>3011-3p	TCONS_CERMONS
agi-min 3019-fig	TCONE_C0314564
api mix 2019 Sp	FCONS_CESDAGES
agi min 2019 Sg	TCONS_C0394000
opi-min 30 19 Sp	TCONS_C0317448
ap+min 30 10 fg	TCONI_CEREZONE
ap-mi+3019-fig	1CONS_CERTION?
sp-m+3016-5p	TCONS_003500-0
ap+m+3011-8p	TCONS_CRITADIA
ap+mx 3010 fig	FCONE_CERANCIA
ap-m+3010-5p	FCON2_0522660
жр-тк-3011-5р	TCONS_00000700
sqi-m>3011-3p	10043,000294
agi-min 3011-fig	FCONE_CERIONS
api nis 2018 Sp	TCONS_CEREZONS
(g)-mi-00115g	TCONS_CG2+92-13

Use case #1 with AskOmics

We want to obtain the messengerRNA cis-regulated by a IncRNA and being also the target of a microRNA. We want each of these RNA to have a differential trend of expression comparing sexual and asexual Aphid peas, this trend being "increase" for the microRNA.


Problem Data interrogation

Try it!

- Which piRNA having a trend "increase" overlap with messengerRNA having a trend "decrease"?
- Which microRNA having a trend "increase" target messengerRNA having a trend "decrease"?
- Which piRNA having a trend "increase" overlap with messengerRNA having a trend "decrease" and being the target of a microRNA having a trend "increase"?
- Which target of the microRNA "api-mir-2c-5p" have a trend "decrease" and are also cis-regulated?
- Which messengerRNA targeted by a microRNA are also overlapping a piRNA and are cis-regulated by a IncRNA, these last three RNA having a differential trend?

Problem Data integration Data interrogation Conclusion

Conclusion

